
Hindawi Publishing Corporation
Journal of Environmental and Public Health
Volume 2011, Article ID 435078, 12 pages
doi:10.1155/2011/435078

Research Article

The Use of Mixed Models for the Analysis of Mediated Data with
Time-Dependent Predictors

Emily A. Blood1 and Debbie M. Cheng2

1 Children’s Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
2 Boston University School of Public Health, 801 Massachusetts Avenue 3rd Floor, Boston, MA 02118, USA

Correspondence should be addressed to Emily A. Blood, emily.blood@childrens.harvard.edu

Received 15 October 2010; Revised 14 February 2011; Accepted 24 February 2011

Academic Editor: Pam R. Factor-Litvak

Copyright © 2011 E. A. Blood and D. M. Cheng. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Linear mixed models (LMMs) are frequently used to analyze longitudinal data. Although these models can be used to evaluate
mediation, they do not directly model causal pathways. Structural equation models (SEMs) are an alternative technique that allows
explicit modeling of mediation. The goal of this paper is to evaluate the performance of LMMs relative to SEMs in the analysis
of mediated longitudinal data with time-dependent predictors and mediators. We simulated mediated longitudinal data from an
SEM and specified delayed effects of the predictor. A variety of model specifications were assessed, and the LMMs and SEMs were
evaluated with respect to bias, coverage probability, power, and Type I error. Models evaluated in the simulation were also applied
to data from an observational cohort of HIV-infected individuals. We found that when carefully constructed, the LMM adequately
models mediated exposure effects that change over time in the presence of mediation, even when the data arise from an SEM.

1. Introduction

In clinical research, both outcomes and predictors are fre-
quently collected repeatedly over time and complex mediated
relationships may be present among the variables of interest.
For example, in a study of the relationship between alcohol
use and HIV disease progression, heavy alcohol consumption
may affect antiretroviral therapy (ART) adherence which, in
turn, affects CD4 cell count. However, alcohol consumption
itself may also directly affect CD4 count. If the goal is to
evaluate the total effect of the main independent variable
(e.g., alcohol consumption) on the outcome (CD4 count),
a single linear mixed effects model (LMM) [1] could be fit
to the data. LMMs account for correlation among repeated
observations within an individual and are frequently used
to analyze longitudinal data. To disentangle the direct versus
indirect effects of alcohol use on HIV disease progression,
however, a series of LMMs could be fit according to the
steps described by Baron and Kenny [2] and demonstrated
by Krull and MacKinnon [3] in the mixed model setting.
In contrast, if these data were analyzed with a structural
equation model (SEM) [4], variables in the causal pathway

could be modeled directly by incorporating adherence into
the SEM as a mediating variable between heavy alcohol con-
sumption and HIV disease progression. Given the objective is
to evaluate the total effect of the main independent variable,
it is unclear whether there are benefits to modeling the
mediated relationship in terms of bias, coverage, and power
for the primary study aim.

Tradeoffs between the use of SEMs and LMMs have been
previously evaluated in general settings, and the equivalence
of LMMs and SEMs in some settings without mediation has
been well documented in the SEM literature [5–12]. The
potential advantages of using SEMs over LMMs to analyze
longitudinal or hierarchical data include the capacity to
explicitly model complex relationships such as mediation [4,
5, 7, 13–16], the flexibility in modeling covariance structures
[7, 15], the availability of fit indices [8, 9], and the capability
to account for measurement error [5, 9, 10, 15]. One
disadvantage is the potential complexity of the SEM model
and, therefore, the possibility of model misspecification. In
addition, from a practical perspective, the SEM may be
less convenient to implement given the need for specialized
software. Nonetheless, its flexibility and capacity to directly

mailto:emily.blood@childrens.harvard.edu


2 Journal of Environmental and Public Health

model variables in the causal pathway make it an appealing
modeling technique for mediated longitudinal data.

In the absence of mediation, the type of SEM evaluated in
this paper is often referred to as a latent growth curve model
[13, 17–20]. Incorporating mediation into a latent growth
curve framework has been demonstrated using either a time-
invariant mediating factor that influences the latent intercept
and slope factors of an outcome trajectory [14] or a time-
varying mediator that assumes a parallel growth process
in which both the mediator and outcome follow growth
trajectories [21, 22]. For both of these approaches, mediation
occurs at the random effect level (individual), rather than
the observation level and, therefore, cannot vary over time.
Modeling mediation that occurs at multiple levels in longi-
tudinal data has been described using separate linear mixed
effects models [3, 23, 24]. These multilevel models allow
for mediation at the individual as well as observation level,
but indirect and total effects are estimated from separate
regressions. In the multi-level context, methods for assessing
mediation at the observation level have been described with
the added complexity that all mediated effects are random
[25, 26]. Finally, longitudinal mediation has been described
outside of the latent growth curve framework using autore-
gressive structural equation models [24, 27]. These models
assume change over time, where the correlation between
observations is not due to underlying random effects (latent
intercept and latent slope), but rather results from direct
association between an outcome and its value at a previous
time point. Autoregressive models are, therefore, not a direct
extension of LMMs but represent an alternative approach to
model mediated longitudinal data. In this paper, we examine
an SEM in which mediation is present at each time point
and can, therefore, vary at the observation level. We do not
assume that the mediator follows a parallel growth process
and assume fixed, not random, effects of the mediator on the
outcome. The mediated effects are estimated simultaneously
rather than through separate multi-level models.

The performance of LMMs relative to SEMs in a
longitudinal data setting with a predictor and mediator both
measured only at baseline with longitudinal outcomes has
previously been studied [28]. The LMM was accurate and
efficient in a variety of settings in estimating the total effect
of the main independent variable. The main advantage of the
SEM was found to be the ability to simultaneously model the
direct and indirect effects of the main independent variable.
The objective of this study is to extend this previous work to
the setting where the predictor and mediator are both time
dependent with fixed effects that change across time.

2. Methods

In the current study, we evaluate the performance of the
LMM relative to the SEM in the analysis of mediated lon-
gitudinal data with a time-varying predictor and mediator.
As an example, we consider a prospective cohort study
assessing the effect of heavy alcohol consumption on HIV
disease progression [29]. The continuous outcome, CD4 cell
count, is denoted by Yj . The main independent variable,

heavy alcohol consumption, is a time-varying binary variable
denoted by zj ; ART adherence, the mediating variable, is
a time-varying variable denoted by Mj ; and baseline age,
a continuous covariate, is denoted by w. ART adherence
is a mediator if the primary independent variable, heavy
alcohol use, affects CD4 count indirectly through ART
adherence. In addition to indirect effects, heavy alcohol use
may also have a direct effect on CD4 cell count that is not
mediated by ART adherence or other variables. We focus
on a setting where the primary aim is to determine the
total effect (direct and indirect effect) of heavy alcohol use
on CD4 cell count while appropriately accounting for the
mediating effect of ART adherence. We arbitrarily assume
there are six time points at which the outcome, predictor,
and mediator are measured. Time is represented by t j ( j =
1, 2, . . . , 6), and times are assumed equally spaced. In this
setting, an LMM could be used to evaluate the total effect
of alcohol consumption on CD4 cell count while accounting
for correlation due to multiple assessments from the same
individual and confounding effects of covariates. Using a
LMM would not, however, allow for directly modeling
mediation among the variables. SEMs are an alternative
approach with the advantage of simultaneous modeling of
direct and indirect effects of alcohol consumption on CD4
cell count. The objective of this paper is to evaluate whether
the LMM performs adequately relative to the SEM when the
goal is to determine the total effect of alcohol consumption,
rather than to evaluate whether a variable (e.g., adherence)
is a mediator. A series of simulation studies is carried out
to evaluate the performance of several LMMs and SEMs
under different conditions. We also describe the application
of the various models to data from a prospective cohort
study evaluating the impact of alcohol use on HIV disease
progression.

2.1. General SEM Incorporating Mediation. There are two
components to an SEM, the measurement model and
the structural model [4]. The measurement model relates
unobserved latent variables and covariates to outcomes and
exposure indicators. In the measurement model, outcomes
are observed variables, while predictors may be observed
or latent variables. This model attempts to capture mea-
surement error in observed variables. In the SEM, the
repeated observations of CD4 count are the outcomes in the
measurement model. The predictors in this model include
underlying individual intercept and slope variables as well
as time-varying primary independent variable (heavy alcohol
use) and the time-varying mediator (ART adherence).

The second component to an SEM, the structural model,
models latent variables as a function of observed variables
and other latent variables. This model attempts to capture
individual variation in the latent variables. In our model,
the underlying individual intercept and slope variables are
treated as latent variables and modeled as the outcomes of the
structural model. In the case of the SEM incorporating time-
varying mediators, the repeated mediators (ART adherence),
while not latent variables, are also outcomes predicted with



Journal of Environmental and Public Health 3

some error by the time-varying primary independent vari-
able (alcohol use) so they are incorporated in the structural
model.

The general SEM incorporating mediation is described in
the following equations. The subject index has been dropped
in the equations below for simplicity:

Yj = U1 + t jU2 + λjMj + κjz j + ε j , (1)

U1 = α1 + γ2w + ζ1, (2)

U2 = α2 + ζ2. (3)

for j = 1 to 6,

Mj = α3 + γ1 j z j + ζ2+ j , (4)

where var(ε) = σ2I and cov(ζ1, ζ2) = Ψ and cov(ζ3 : ζ8) = Φ.
The parameters and latent variables in the above equa-

tions are interpreted as follows.

(i) U1 is the random intercept of the repeated outcomes.

(ii) U2 is the random slope of the repeated outcomes.

(iii) λj represents the effect of the mediator on the out-
come at time j.

(iv) γ1 j represents the effect of the main independent
variables on the mediator at time j.

(v) κj represents the direct effect of the main indepen-
dent variable on the outcome at time j.

(vi) The product λj × γ1 j represents the indirect effect
of the main independent variable on the outcome at
time j.

(vii) γ2 represents the constant effect of the continuous
covariate on the repeated outcomes.

The SEM mediation model is represented in Figure 1. In
the following diagram we have used the conventions for SEM
path diagrams including rectangles representing observed
variables, ovals representing latent variables, triangles repre-
senting intercept terms, and arrows representing regression
relationships between variables.

2.2. SEM Used for Data Generation. The simulated mediated
data for this study are generated from an SEM, because our
goal is to evaluate the performance of the LMM in a setting
where the SEM is assumed to be optimal. We considered a
setting where the effects of alcohol, the main independent
variable, changed across time. Specifically, we assumed a
constant short-term effect of alcohol on CD4 count for the
first three time points and a constant long-term effect of
alcohol across the last three time points. We refer to this as a
“delayed effect” of the main independent variable. To model
this delayed effect, we allowed κj in (1) to vary. Specifically,
we set the first three κ’s to be equal (κ∗ = κ1 = κ2 = κ3)
and the last three κ’s to be equal (κ′ = κ4 = κ5 = κ6), where
κ′ > κ∗. Short and long-term effects were similarly defined
for λj and γ1 j . Under these assumptions, it can be shown

that the predictive formula for a given outcome at time t j ,
for j = 1, 2, 3 is

Yj = (α1 + λ∗α3) + γ2w + α2t j +
(
λ∗γ∗1 + κ∗

)
zj

+
(
ζ1 + λ∗ζ2+ j

)
+ ζ2t j + ε j ,

(5)

and for j = 4, 5, 6 is

Yj = (α1 + λ′α3) + γ2w + α2t j +
(
λ′γ′1 + κ′

)
zj

+
(
ζ1 + λ′ζ2+ j

)
+ ζ2t j + ε j .

(6)

The model assumes a linear effect of time on the outcome.

2.2.1. Simulation Procedures. For the initial set of simula-
tions, we varied the distribution of the total effect of the
predictor on the outcome. We evaluated three situations: (i)
the total effect was equally distributed between the direct and
indirect effect, (ii) the total effect was primarily direct (i.e.,
the direct effect was larger than the indirect effect through
the mediator), and (iii) the total effect was primarily indirect
(i.e., the indirect effect through the mediator was larger than
the direct effect of the predictor on the outcome).

These simulations considered a setting where the true
total effect of the primary independent variable was small
(0.05) for the first three time points and small to moderate
for the second three time points (0.25), as defined by Cohen
[30]. These effect sizes were selected as they are considered
feasible and realistic for a wide range of clinical settings.
Effect size was defined as the true value of the regression
parameter divided by the true standard deviation of the
residual error term (εi j). We fixed the true standard deviation
of all residual error terms in the simulated data to one, so
the effect size is equal to the true value of the regression
coefficient. We used a sample size of 350 as this sample size
yielded adequate power for the second three time points with
the effect size we assumed.

In addition to the initial set of simulations, we also
performed simulations evaluating sample sizes ranging from
100–500 and alternative effect sizes, for example, small
negative effect sizes as observed in the example data set
described in Section 4, a moderate effect size (0.50) as defined
by Cohen [30], and a null effect size to evaluate the Type I
error properties of the models.

Model performance with respect to the effect of the
primary independent variable on the outcome was evaluated
separately for each time-point.

We generated data using the SEM described above with
repeated measures of a continuous outcome, a random
intercept and slope and a time-varying main independent
predictor and mediating variable. The outcome, main inde-
pendent variable, and mediator were each assessed at 6
time points. The following steps were taken to generate the
mediated longitudinal data.

(1) Two multivariate normal random variates were gen-
erated, one corresponding to the residual variance
of the latent intercept and one to be the residual
variance of the latent slope.
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Figure 1: Path diagram of unrestricted structural equation model.

(2) Six multivariate normal random variates were gen-
erated corresponding to the residual variance of the
mediator variables.

(3) Based on equations (2) and (3), the value of the latent
intercept and latent slope were computed.

(4) Based on equation (4), the values of the mediator
variables were determined.

(5) Six independent standard normal random variates
were generated corresponding to the residual error of
the six Yj ’s.

(6) Based on equation (1), the value of the Yj ’s were
generated.

(7) Steps (1) through (6) were repeated 1000 times to
create 1000 datasets for each simulation.

The models fit to the simulated data were evaluated
by assessing: (i) Bias: estimated as the difference between
the true parameter value and the mean observed parameter
value divided by the true parameter value. (ii) Coverage
probability: estimated as the percentage of the 1000 95%
confidence intervals that contained the true parameter value.
(iii) Power: estimated as the percentage of the 1000 datasets
in which a hypothesis test of the parameter of interest was
statistically significant and (iv) Type I error: for settings
assuming null effects (for both direct and indirect effects),
Type I error was estimated as the percentage of the 1000
datasets in which a hypothesis test of the parameter of
interest was statistically significant.

2.3. SEMs and LMMs Fit to the Simulated Data. After the
simulated data were generated as described above, the data
were fit with three SEMs and five LMMs representing a range
of possible models that could be fit to mediated longitudinal
data.

2.3.1. Constant Effect SEM. The first SEM we evaluated
represents one of the simplest and most common models
that can be fit. This model assumes that the direct effect of
alcohol on CD4 count is constant (i.e., κ = κ1 = · · · = κ6),
the effect of alcohol on ART adherence is constant (i.e., γ11 =
γ12 = · · · = γ16), and the effect of ART adherence on CD4
count is constant (i.e., λ1 = λ2 = · · · = λ6). The total effect
of the repeated primary independent variable on the repeated
outcome is therefore represented by κ + λγ1. We refer to this
model as the constant effect SEM (CESEM).

2.3.2. Delayed Effect SEM. The second SEM fit to the
simulated data is the model that was used to simulate the
data and defined in Section 2.2; that is, it assumes an early
versus late effect. In this model, a short-term total effect of
alcohol on CD4 count (κ∗ + λ∗γ∗1 ) is assumed for the first
three time points, and a long-term effect of alcohol on CD4
count is assumed for the second three time points (κ′+λ′γ′1).

2.3.3. Unrestricted SEM. The last SEM evaluated is the
unrestricted model defined in (1)–(4) and represented in
Figure 1. The unrestricted SEM is a model that could be used
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to evaluate the nature of a mediated longitudinal relation-
ship between alcohol and HIV disease progression without
assuming how the effects may change across time.

2.3.4. Constant Effect Linear Mixed Model. The first mixed
model fit to the simulated data assumes the effect of the
repeated primary independent variable to remains constant
over time. The formula for this constant effect mixed model
is

Yj = β0 + β1w + β2t j + β3zj + b1 + b2t j + ε j , (7)

where var(ε) = σ2 I and cov(b) = Ψ.
In this model, the interpretation of the parameters is as

follows.

(i) β0 is the intercept of the repeated outcomes.

(ii) β1 is the effect of the continuous covariate, w, on the
repeated outcomes.

(iii) β2 is the effect of time, t j , on the repeated outcome.

(iv) β3 is the effect of the repeated primary independent
variable, zj , on the repeated outcomes.

(v) b1 is the random intercept of the repeated outcomes.

(vi) b2 is the random slope of the repeated outcomes.

We note that the mediating variable has been excluded
from this model, since the goal is to evaluate the total effect
of the main independent variable. If a known mediator is
included in a model, then the parameter estimate associated
with the primary predictor estimates the direct, rather than
the total effect, of that predictor on the outcome [28]. Under
the constant effect LMM defined in (7), the total effect of
alcohol on CD4 count at any time-point is represented by β3.

2.3.5. Full Delayed Effect Mixed Model. To capture potential
short-term and long-term effects, we allowed the effect of
alcohol at the first three time points to differ from that at
the last three time points. To accomplish this, an indicator
variable representing observations from the last three time
points was entered into the model (i.e., indicator variable
I( j > 3) = 1 at time points 4, 5 and 6 and I( j > 3) = 0
otherwise) and the following model was fit:

Yj = β0 + β1w + β2t j + β3I
(
j > 3

)

+ β4zj + β5I
(
j > 3

)
zj + b1 + b2t j + ε j .

(8)

Therefore, the regression model for j = 1, 2, 3 would be

Yj = β0 + β1w + β2t j + β4zj + b1 + b2t j + ε j , (9)

and for j = 4, 5, 6, it would be

Yj =
(
β0 + β3

)
+ β1w + β2t j +

(
β4 + β5

)
zj + b1 + b2t j + ε j

(10)

In this model, the total effect of the repeated primary
independent variable is represented by β4 for the first three
time points and β4 + β5 for the second three time points.

In addition, the intercept of the repeated outcomes is given
by β0 for the first three time-periods and by β0 + β3 for the
second three time-periods. Thus, this model allows for (a)
estimating a potentially delayed effect of alcohol (zj) and (b)
accounting for a period effect, by allowing different intercept
values for the early and late time periods. The period effect
may be induced by the mediator’s changing direct effect (in
the SEM from which the data are generated, the mediator
effect is λ∗α3 from (5) for the first three time points and λ′α3

from (6) for the last three time points).

2.3.6. Naive Delayed Effect Mixed Model. As described above,
the simulated data are generated from an SEM where the
effect of the mediator changes over time. In practice, such
time dependent effects can be modeled directly as part of the
mediation process using SEMs. In contrast, in LMM models,
this difference in mean outcome value for early versus
late effects can be captured by a time-varying intercept.
However, the need for a time-varying intercept term is not
immediately clear when fitting a mixed model in this setting,
and thus, a model without time-varying intercepts may be
more commonly fit. We refer to such a model as the naive
delayed effect model

Yj = β0 + β1w + β2t j + β3zj

+ I
(
j > 3

)
β4zj + b1 + b2t j + ε j .

(11)

This model is similar to the full delayed model but assumes
the intercept of the repeated outcomes, β0, is the same for
all six time periods. In this naive model, the total effect of
alcohol on HIV disease progression is given by β3 for the first
three time points and by β3 + β4 for the second three time
points.

2.3.7. Time Interaction Linear Mixed Model. In mixed mod-
els, an interaction between time and the main independent
variable is commonly included to assess whether the effect of
the independent variable changes linearly across time

Yj = β0 + β1w + β2t j + β3zj + β4t j z j + b1 + b2t j + ε j .
(12)

In this model, the total effect of alcohol (zj) is modeled as a
linear function of time, t j , and is represented by β3 + β4t j .

2.3.8. Unrestricted Mixed Model. The last mixed model we
evaluated allowed the effect of alcohol on CD4 count to vary
at each time-point, without assuming linearity. The equation
for this unrestricted LMM is

Yj = β0 + βww + βtj I
(
t j
)

+ βzzj + βz,t j I
(
t j
)
zj

+ b1 + b2t j + εi j
(13)

where I(t j) is an indicator of time point and is defined as
I(t j) = 1 if t j = j and I(t j) = 0 otherwise. In this model, the
effect of zj is a function of time and is represented by βz +
βz,t j I(t j). This is the least restrictive model and is sometimes
called a profile analysis [31].
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2.4. Model Comparisons. To evaluate the performance of
the LMM relative to the SEM, we made the following five
comparisons.

(1) Constant effect SEM (CESEM) versus constant effect
mixed model (CEMM).

(2) Delayed effect SEM (DESEM) versus full delayed
effect mixed model (FDEMM).

(3) Unrestricted SEM (USEM) versus unrestricted mixed
model (UMM).

(4) Delayed effect SEM (DESEM) versus naive delayed
effect mixed model (NDEMM).

(5) Unrestricted SEM (USEM) versus time interaction
mixed model (TIMM).

We simulated data under the SEM defined in Section 2.2.
The SEMs were fit as a reference standard to compare with
the LMM results, since the objective was to evaluate the
performance of the LMM in a setting where the SEM is
assumed to be optimal. For comparisons (1), (2), and (3),
the main difference between the models is that the SEM
explicitly models the mediation, while the LMM does not.
All other aspects of the model are the same. Comparison 4
is of interest, because with time-varying mediated data, the
naive delayed effect model is commonly fit within the mixed
model framework. However, as described earlier, this model
does not fully capture the time-varying mediation process,
and thus, it is useful to evaluate its performance against the
SEM. Comparison (5) is evaluated since a time interaction
mixed model is also a common approach in the mixed model
framework when a time-varying relationship is suspected.
However, it relies on the assumption that the effect of alcohol
is a linear function of time. It is, therefore, of interest to
compare this model to the unrestricted SEM, which does not
assume linearity.

3. Results of Simulation Study

3.1. Constant Effect SEM versus Constant Effect Mixed Model.
In a setting where the true effect size changed over time,
the estimated power to detect the true effect of the primary
independent variables on the outcome from a model assum-
ing a constant effect was generally inadequate with a sample
size of 350 (≤66% for both the SEM and LMM in all cases)
(Table 1). When effects were distributed equally between
direct and indirect effects, estimated power was similar
for the two models although slightly higher for the SEM
(65% versus 62%). The bias estimates for both the CESEM
and CEMM were quite large (180% and 171%, resp., for
t1–t3 and −44% and −45%, resp., for t4–t6), overestimating
smaller short-term effects and underestimating larger long-
term effects as would be expected. The coverage probability
was also quite low although for both models, it was higher for
the early time points compared to the later three time points.
Similar results were observed when effects were primarily
direct and also when they were primarily indirect. We note
that we deliberately created a small effect at the first three
time points to simulate a delayed effect of treatment on out-
come and, therefore, did not expect to have adequate power

to detect effects at the first three time points with the sample
size evaluated. Similar patterns were observed with different
sample sizes and effect sizes. Power was markedly lower for
sample sizes less than 350 and for the reduced effect sizes.

3.2. Delayed Effect SEM versus Full Delayed Effect Mixed
Model. The DESEM and FDEMM had similar power to
detect long-term total effects independent of whether effects
were equally distributed, primarily direct, and primarily
indirect (Table 2). With a sample size of 350 and an effect
size of 0.25, the estimated power for the last three time points
for the DESEM was slightly higher (83%–85%) than for the
FDEMM (82%–84%). The bias for both models was low
(−0.1%−1.7% and −0.3%−1.4%, resp.) and the coverage
probability was high (95% and 94% for the DESEM and
FDEMM, resp.). Similar patterns were observed for other
sample sizes with the same effect size. For smaller sample
sizes (100 and 200), the power dropped to unacceptable levels
(32%–63%).

Again, since the magnitude of the effect at the first three
time points is small, we did not expect to have adequate
power to detect such an effect in either modeling framework
with a sample size of 350. In both models, the power to
detect the total effect for the first three time periods was
substantially lower than that for the last three (10%–13% in
the first three time points versus 82%–85% for the second
three time points for both models), where the effects were
of a larger magnitude. With a sample size of 400, the
power remained low to detect a small effect (−0.11, the
observed effect size from the real data example standardized
by the residual standard deviation) for both models (30% for
DESEM and FDEMM). At all sample and effect sizes, results
did not differ substantially between modeling frameworks.

3.3. Unrestricted SEM versus Unrestricted Mixed Model. With
a sample size of 350, the performance of the USEM and
UMM were very similar, regardless of whether effects were
equally distributed, primarily direct, or primarily indirect
(Table 3). As seen in previous models, the power to detect
the effect at the first three time points was low (6%–9%)
for both models. For the last three time points, the power to
detect the effects was also low for both models (36%–58% for
the USEM and 36%–55% for the UMM). The bias, however,
was also quite low for both models (−0.08% to 2.9% for
the USEM and −2.6% to 2.6% for the UMM). The coverage
probability for both models was good (93%–96% for the
USEM and UMM) across the different effect distributions. In
these models, no specific relationship with time is assumed
in the LMM or the SEM, so both models freely estimate
the effect of the time-varying main independent variable
on time. The cost of this, however, is that several more
parameters must be estimated, and therefore, the power to
detect effects is reduced. Similar patterns were observed for
other sample sizes and effect sizes.

3.4. Delayed Effect SEM versus Naive Delayed Effect Mixed
Model. With the sample size of 350, when the distribution
of the effect was equally distributed, the power to detect the
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Table 1: Performance of SEM and linear mixed model assuming total effect of main independent variable is constant when true underlying
effects are small for early time points and small to moderate for late time points.

Simulated data scenarios Constant effect SEM Constant effect LMM

Time
point

Effect size
Sample

size
Effect

distribution
Bias (%)

Coverage
probability

(%)

Power
(%)

Bias (%)
Coverage

probability
(%)

Power (%)

t1 : t3 0.05 350 Equal 180 67 65 171 71 62

t4 : t6 0.25 350 Equal −44 56 65 −45 53 62

t1 : t3 0.05 350
Primarily
indirect

179 70 60 164 73 55

t4 : t6 0.25 350
Primarily
indirect

−44 55 60 −47 51 55

t1 : t3 0.05 350
Primarily

direct
173 69 66 169 69 65

t4 : t6 0.25 350
Primarily

direct
−45 50 66 −46 49 65

t1 : t3 0.05 100 Equal 168 86 24 159 88 22

t4 : t6 0.25 100 Equal −46 82 24 −48 81 22

t1 : t3 0.05 200 Equal 178 80 41 169 81 38

t4 : t6 0.25 200 Equal −44 73 41 −46 70 38

t1 : t3 0.05 400 Equal 175 65 67 165 69 64

t4 : t6 0.25 400 Equal −45 49 67 −47 46 64

t1 : t3 0.05 350 Equal 395 3 97 369 2 94

t4 : t6 0.5 350 Equal −50 16 97 −53 21 94

t1 : t3 0.05 400 Equal −148 73 8 −137 76 6

t4 : t6 −0.11 400 Equal −78 63 8 −83 60 6

Based on 1000 simulated datasets.

total effect for last three time points was very good for the
DESEM (83%), the bias was low (−0.1%), and the coverage
probability was high (95%) (Table 2). In contrast, for the
NDEMM, there was substantial bias (109%) in estimating
the total effect for the last three time points. This naive model
clearly does not correctly estimate the effect of the primary
independent variable on the outcome. Similar trends were
observed in the comparison of the two models regardless of
how the total effect was distributed, the sample size, or the
effect size.

3.5. Unrestricted SEM versus Time-Interaction Mixed Model.
Regardless of the distribution of effects, sample size, or effect
size, the TIMM and USEM had low power to detect the
effect of the repeated primary independent variable on the
repeated outcome for the first three time points (Table 3), as
expected. With a sample size of 350, power ranged 7%–9%
for the USEM and 5%–56% for the TIMM. For the last three
time points at this sample size, the USEM had lower bias but
also lower power compared to the TIMM. For the TIMM,
incorrectly forcing a linear trend resulted in a larger degree
of bias. While the TIMM had a large degree of bias at all
time points, it has higher power than the USEM at most time
points. This increased power relative to the USEM is likely
due, at least in part, to fewer parameters being estimated. The
higher power and bias of the TIMM relative to the USEM was
also observed for other sample sizes and effect sizes (Table 3).

3.6. Type I Error Rates. Table 4 shows the estimated Type I
error rates for a range of sample sizes. The nominal Type
I error rate was 0.05. The Type I error was remarkably
similar between analogous SEM and LMM models. Across
all models, the observed Type I error rates ranged from 0.030
(CESEM, sample size of 350) to 0.072 (UMM, sample size of
100).

4. Real-Data Example: Alcohol and HIV
Disease Progression

To demonstrate the application of the various LMMs and
SEMs evaluated in the simulation study, we analyzed data
from a prospective cohort study evaluating the effect of
alcohol use on HIV disease progression. Samet et al. have
previously reported the analyses from this longitudinal
cohort study [29]. The original analyses combined data
from two cohorts (the HIV-ALC and HIV-LIVE cohorts). To
illustrate the models evaluated in this paper, we have used
data from the HIV-LIVE study and fit the various LMMs
and SEMs of interest. For clarity of presentation, we limited
the analyses to observations where subjects reported any
ART use during followup (n = 319) and included only
the following key variables: heavy alcohol consumption (yes
versus no), the main independent variable, ART adherence
(percentage of pills taken in the last three days), the mediator;
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Table 2: Performance of SEM and linear mixed model assuming delayed effects of main independent variable when true underlying effects
are small for early time points and small to moderate for late time points.

Simulated data scenarios Delayed effect SEM Naive delayed effect LMM Full delayed effect LMM

Time
point

Effect size
Sample

size
Bias
(%)

Coverage
probability

(%)
Power (%)

Bias
(%)

Coverage
probability

(%)
Power (%) Bias (%)

Coverage
probability

(%)
Power (%)

t1 : t3 0.05 350 10 95 13 390 23 53 9.6 95 13

t4 : t6 0.25 350 −0.1 95 83 109 9 100 −0.3 94 82

t1 : t3 0.05∗ 350 −4.2 95 11 522 6 82 −5.0 95 10

t4 : t6 0.25∗ 350 1.7 95 83 144 0.8 100 1.4 94 82

t1 : t3 0.05∗∗ 350 2.2 94 11 −234 61 17 2.2 94 12

t4 : t6 0.25∗∗ 350 −0.7 95 85 633 48 100 −0.7 96 84

t1 : t3 0.05 100 −0.2 94 8 −397 68 20 −0.9 94 7

t4 : t6 0.25 100 −2.9 94 34 107 58 92 −2.5 94 32

t1 : t3 0.05 200 0.2 95 10 −396 45 34 -0.9 95 9

t4 : t6 0.25 200 0.8 95 63 109 28 99 0.7 96 61

t1 : t3 0.05 400 0.2 94 14 −400 17 60 −1.4 94 12

t4 : t6 0.25 400 8.0 96 88 109 6 100 −0.8 94 86

t1 : t3 0.05 350 4.2 96 11 −684 0.2 97 4.1 96 9

t4 : t6 0.5 350 0.5 95 100 98 0 100 0.09 95 100

t1 : t3 0.05 400 0.4 95 11 −148 80 6 0.6 95 10

t4 : t6 −0.11 400 1.5 95 30 −90 74 6 2 95 30

Based on 1000 simulated datasets.
Results are from simulated data with total effects equally distributed between direct and indirect effects, except where indicated.
∗Total effect is primarily direct.
∗∗Total effect is primarily indirect.

age, a potential confounder, and CD4 cell count, the primary
outcome. Each variable was assessed every six months for up
to four years.

The total effect of alcohol consumption on CD4 count
was not statistically significant in any of the SEMs or LMMs
fit to the data. Estimated total effects are detailed in Table 5.
Both constant effect models showed a small negative effect
(−3.7 in the CESEM and −3.0 in the CEMM). The delayed
effect SEM and LMM showed similar negative effects in the
last four time points although the magnitude of effect in
the DESEM was slightly larger (−10.3) than that for the
DEMM (−4.1). The magnitude of effect at the first three
time points was quite small in both delayed effect models
but differed in sign in the DESEM (0.41) and DEMM (−2.3)
although neither value was significantly different from zero.
The unrestricted models generally showed similar results
with effects ranging from −41.8 to 5.7 in the USEM and
ranging from −15.8 to 9.5 in the UMM. The direction of
the estimated alcohol effects were consistent between models
with the exception of the third time-point which had a
small estimated negative effect in the USEM (−1.4) and a
small estimated positive effect in the UMM (6.9); however,
neither effect was statistically significant. The magnitude of
the effects were similar between the TIMM and USEM. Since
a linear effect of time is assumed in the TIMM, however,
all effects after time-point 2 are negative, whereas in the
USEM, the direction of effects changes between negative and
positive.

5. Discussion

Mixed models are a useful technique to analyze longitudinal
data, with time-dependent variables. They can be applied to
mediated longitudinal data, and a series of models can be fit
to disentangle direct versus indirect effects of an exposure.
However, it is unknown whether they perform well relative to
SEMs, a method used for mediational analysis. In this paper,
we evaluated the performance of the linear mixed model rel-
ative to the SEM in the setting of a time-dependent predictor
and mediator, where the effects of both change over time.

The main simulation study assumed that the primary
independent predictor had a delayed effect on the outcome
(i.e., a small effect at the first three time points and a
moderate effect at the last three time points). A range
of SEMs (constant effect SEM, delayed effect SEM, and
unrestricted SEM) and LMMs (constant effect mixed model,
naive delayed effect mixed model, full delayed effect mixed
model, time-interaction mixed model, and unrestricted
mixed model) were fit to the simulated data.

Three comparisons were made between “analogous”
models in that the main difference between models was
that the SEM explicitly models the mediation, while in the
mixed model, the mediator is removed from the model. The
analogous models were constant effect SEM versus constant
effect mixed model delayed effect SEM versus full delayed
effect mixed model, and unrestricted SEM versus unre-
stricted mixed model. For each of the three comparisons,
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Table 3: Performance of unrestricted structural equation model (USEM) and unrestricted and time interaction linear mixed models (UMM
and TIMM, resp.) when true underlying effects are small for early time points and small to moderate for late time points.

Simulated data scenarios USEM TIMM UMM

Time
point

Effect size
Sample

size
Bias
(%)

Coverage
probability

(%)
Power (%)

Bias
(%)

Coverage
probability

(%)
Power (%)

Bias
(%)

Coverage
probability

(%)
Power (%)

t1 0.05 350 16 95 8 −50 93 6 16 96 7

t2 0.05 350 9.4 94 8 51 94 19 8.6 94 8

t3 0.05 350 7.4 94 9 153 75 56 4.9 95 8

t4 0.25 350 −0.6 94 54 −29 81 76 −0.09 94 54

t5 0.25 350 −0.4 94 48 −8.9 94 73 −0.5 93 48

t6 0.25 350 −0.08 93 40 11 93 66 −1.0 94 38

t1 0.05∗ 350 −4.0 94 8 −71 94 5 −6.3 95 7

t2 0.05∗ 350 −9.6 96 7 38 94 15 −9.8 95 6

t3 0.05∗ 350 −1.4 95 8 146 78 49 1.3 95 7

t4 0.25∗ 350 2.9 95 55 −29 81 70 2.6 94 54

t5 0.25∗ 350 2.2 95 49 −7.4 94 71 1.6 94 48

t6 0.25∗ 350 0.4 95 36 14 94 66 −0.5 95 36

t1 0.05∗∗ 350 10 95 7 −60 94 6 8.7 95 7

t2 0.05∗∗ 350 −14 93 7 44 95 18 −14 93 7

t3 0.05∗∗ 350 11 94 8 148 75 56 12 94 9

t4 0.25∗∗ 350 −0.4 95 58 −29 81 79 −0.3 95 55

t5 0.25∗∗ 350 0.0 96 50 −8.6 95 77 0.2 96 48

t6 0.25∗∗ 350 −0.2 96 37 12 95 70 −2.6 96 36

t1 0.05 100 −25 94 7 −26 94 6 −69 93 6

t2 0.05 100 8.8 94 6 7.2 93 6 36 94 9

t3 0.05 100 10 96 5 14 95 5 141 90 20

t4 0.25 100 −2.0 94 20 −2.2 93 20 −31 90 30

t5 0.25 100 −3.8 94 17 −3.2 94 17 −9.8 95 29

t6 0.25 100 −2.5 94 16 −2.2 94 16 11 95 26

t1 0.05 200 8.2 95 7 −60 95 5 7.7 95 7

t2 0.05 200 1.2 95 7 45 95 13 0.4 95 6

t3 0.05 200 −7.8 95 7 150 83 34 −9.2 95 6

t4 0.25 200 4.0 96 38 −29 97 52 4.1 95 36

t5 0.25 200 −3.0 95 28 −8.1 95 50 −2.6 95 28

t6 0.25 200 −0.7 94 24 13 95 45 −1.3 94 25

t1 0.05 400 41 95 8 −65 94 5 2.7 95 7

t2 0.05 400 −3.2 94 7 41 94 19 −4.7 97 6

t3 0.05 400 −0.2 95 9 146 74 58 −2.3 96 7

t4 0.25 400 −1.3 95 60 −30 76 80 −1.7 95 58

t5 0.25 400 1.2 95 54 −8.6 95 79 1.0 94 53

t6 0.25 400 −0.5 96 43 12 95 73 −1.9 96 40

t1 0.05 400 −6 95 7 52 94 14 −7 95 7

t2 0.05 400 4 97 6 −33 95 8 3 97 7

t3 0.05 400 2 95 8 −119 82 5 5 95 7

t4 −0.11 400 0.4 95 17 −52 83 14 0.9 95 17

t5 −0.11 400 2.5 95 17 −13 95 23 4 95 17

t6 −0.11 400 1 95 13 26 94 26 2 95 13

Based on 1000 simulated datasets.
Results are from simulated data with total effects equally distributed between direct and indirect effects, except where indicated.
∗Total effect is primarily direct.
∗∗Total effect is primarily indirect.
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Table 4: Type I error rates for mediated structural equation models and linear mixed models at various sample sizes.

Simulated data Unrestricted Delayed effect Constant effect Time interaction

Time point Sample size SEM LMM SEM LMM SEM LMM LMM

t1 100 0.050 0.050 0.053 0.053 0.05 0.053 0.053

t2 100 0.064 0.072 0.053 0.053 0.05 0.053 0.065

t3 100 0.038 0.039 0.053 0.053 0.05 0.053 0.053

t4 100 0.047 0.051 0.045 0.043 0.05 0.053 0.045

t5 100 0.048 0.051 0.045 0.043 0.05 0.053 0.041

t6 100 0.050 0.053 0.045 0.043 0.05 0.053 0.038

t1 350 0.053 0.053 0.048 0.046 0.030 0.031 0.054

t2 350 0.044 0.044 0.048 0.046 0.030 0.031 0.047

t3 350 0.051 0.051 0.048 0.046 0.030 0.031 0.032

t4 350 0.049 0.049 0.046 0.045 0.030 0.031 0.038

t5 350 0.038 0.038 0.046 0.045 0.030 0.031 0.046

t6 350 0.052 0.052 0.046 0.045 0.030 0.031 0.049

t1 500 0.058 0.064 0.047 0.045 0.054 0.053 0.052

t2 500 0.048 0.048 0.047 0.045 0.054 0.053 0.049

t3 500 0.049 0.046 0.047 0.045 0.054 0.053 0.054

t4 500 0.049 0.050 0.048 0.048 0.054 0.053 0.047

t5 500 0.051 0.048 0.048 0.048 0.054 0.053 0.048

t6 500 0.046 0.047 0.048 0.048 0.054 0.053 0.044

Based on 1000 simulated datasets.

Table 5: The total effect of heavy alcohol consumption on CD4 cell count from a prospective cohort study of HIV-infected subjects on
antiretroviral therapy (n = 319) [29]. Longitudinal regression analyses were performed using linear mixed models and structural equation
models, and adjusted mean differences (SE) are reported.

SEM LMM

Time point Constant effect Delayed effect Unrestricted Constant effect Delayed effect Time interaction Unrestricted

t1 −3.7 (9.6) 0.41 (11.6) −4.8 (19.6) −3.0 (11.3) −2.3 (13.8) 0.44 (22.0) −7.7 (23.9)

t2 −3.7 (9.6) 0.41 (11.6) 0.13 (20.1) −3.0 (11.3) −2.3 (13.8) −0.41 (18.1) 6.2 (24.1)

t3 −3.7 (9.6) 0.41 (11.6) −1.4 (20.4) −3.0 (11.3) −2.3 (13.8) −1.3 (14.7) 6.9 (23.7)

t4 −3.7 (9.6) 0.41 (11.6) 5.7 (18.9) −3.0 (11.3) −2.3 (13.8) −2.1 (12.3) 0.68 (22.3)

t5 −3.7 (9.6) −10.3 (14.0) −3.4 (20.2) −3.0 (11.3) −4.1 (16.5) −3.0 (11.3) −4.6 (24.1)

t6 −3.7 (9.6) −10.3 (14.0) 3.8 (22.0) −3.0 (11.3) −4.1 (16.5) −3.8 (12.3) 9.5 (25.1)

t7 −3.7 (9.6) −10.3 (14.0) −13.1 (25.9) −3.0 (11.3) −4.1 (16.5) −4.7 (14.8) −13.6 (30.3)

t8 −3.7 (9.6) −10.3 (14.0) −41.8 (31.6) −3.0 (11.3) −4.1 (16.5) −5.5 (18.2) −15.8 (35.1)

the SEM and LMM yielded similar results. The power, bias,
and coverage probability were all similar when the SEM and
LMM were compared. The results from the analysis of data
from a prospective cohort study evaluating the impact of
alcohol use on HIV disease progression further illustrated the
similarity of results from analogous SEMs and LMMs.

We also considered two comparisons of nonanalogous
models. The first comparison was between the delayed effect
SEM and the naive delayed effect mixed model. In the SEM
framework, mediation can be directly modeled at each time-
point, and therefore, the mediated delayed effect of the time-
varying predictor is easily incorporated. In the mixed model
framework, however, mediation is not directly modeled.
Instead, mediators are removed from the model if the goal
is to obtain the total effect of the time-varying predictor on
the outcome [28]. Therefore, in the mixed model framework,
it may not be clear whether a time-varying intercept term

is necessary in the model to properly account for the
mediated relationship between the predictor and outcome.
Our simulations show that the naive delayed mixed model
produced extremely biased estimates of both short- and
long-term exposure effects, and coverage probabilities were
poor. Therefore, although the naive delayed effect mixed
model represents a model that may be a natural choice in the
mixed model framework, it may not produce valid estimates.
To obtain accurate estimates with the mixed model, fitting
the full delayed effect model (with time-specific intercept
terms) was required. However, as noted earlier, this model
may be nonintuitive. This is a distinct disadvantage of
the mixed model framework since the model that may be
the most natural to fit may result in inaccurate estimates,
whereas a natural choice for the SEM is the full delayed effect
model, a model which performed relatively well. The second
set of nonanalogous models compared the unrestricted SEM
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and the time-interaction mixed model. These two models
reflect a potential difference in the way that time is handled
in the two frameworks. In longitudinal data analysis, SEMs
incorporate the value of time as a fixed regression coefficient
in the measurement model. Treatment of time is usually
limited to a linear main effect of time. If some unspecified
nonlinear relationship over time between the predictor and
outcome is suspected, the most natural way to evaluate this is
to leave the relationship between the time-varying predictor
and outcome unrestricted and obtain separate estimates at
each time-point as is done in the unrestricted SEM. In
mixed models, however, interactions between time and other
predictors (time invariant or time varying) are frequently
incorporated. In our simulation study, the time interaction
mixed model had substantially larger bias compared to
the unrestricted SEM. Power was generally higher for the
mixed model, possibly due in part to the fewer number
of parameters being estimated. The difference between the
time-interaction mixed model and the unrestricted SEM was
also observed in the real-data example.

In the setting of mediated longitudinal data where expo-
sure effects change over time, the mixed model performed
well relative to analogous SEMs. The delayed effect SEM and
full delayed effect mixed model had the best performance in
terms of bias, coverage probability, and power in modeling
the time-specific relationships between variables. It should
be noted that in the setting of mediated time-specific effects,
the delayed effect SEM, a natural choice for a model within
the SEM framework, yielded substantially better results than
the naive delayed mixed model, a natural model to choose
within the LMM framework. Two other common models
that may be fit, the unrestricted SEM and mixed model, both
performed well in terms of bias and coverage probability,
however, both had lower power due to the relatively large
number of parameters being estimated for the given sample
size. We note that the results observed in this study may not
be generalizable to other settings, for example, scenarios with
more complex pathways and relationships between variables
could affect the performance of the LMM.

Linear mixed models can perform well relative to SEMs
in the analysis of mediated longitudinal data with a time-
dependent predictor and mediator. However, care must be
taken to identify an appropriate model that adequately
accounts for mediator effects, for example, by including
time-varying intercepts and excluding variables in the causal
pathway. In the specific setting of delayed effect of the time-
varying predictor, common models fit within the mixed
model framework may not perform adequately in this medi-
ated longitudinal data setting. However, an appropriately
specified mixed model can have good performance relative
to the SEM in evaluating the overall effects of a time-varying
predictor.
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